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Abstract: In this paper we analyze the dynamics of a nonlinear Cournot-type duopoly game 
with differentiated goods for two bounded rational players with different objective 
functions. Specifically, the first player is a semi-public company and cares about a 
percentage of the social welfare and the second player is a private company which cares 
only about its own profit maximization. The game is modelled with a system of two 
difference equations We examine the effect of the parameters on the equilibria of the model 
and we analyse their stability conditions. Complex dynamic features including period 
doubling bifurcations of the unique Nash equilibrium are also investigated. Numerical 
simulations are carried out to show the complex behaviour. The chaotic features are 
justified numerically via computing Lyapunov numbers, sensitive dependence on initial 
conditions, bifurcation diagrams and strange attractors. 
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1. INTRODUCTION 

Duopoly game is the most basic form of oligopoly, a market dominated by a small number 

of companies. Cournot, in 1838 has introduced the first formal theory of oligopoly. In 1883 

another French mathematician Joseph Louis Francois Bertrand modified Cournot game 

suggesting that firms actually choose prices rather than quantities. Originally Cournot and 

Bertrand models were based on the premise that all players follow naïve expectations, so that in 

every step, each player (firm) assumes the last values that were taken by the competitors without 

estimation of their future reactions. However, in real market conditions such an assumption is 

very unlikely since not all players share naive beliefs. Therefore, different approaches to firm 

behavior were proposed. Some authors considered duopolies with homogeneous expectations 

and found a variety of complex dynamics in their games, such as appearance of strange attractors 

(Agiza, 1999, Agiza et al., 2002, Agliari et al., 2005, 2006, Bischi, Kopel, 2001, Kopel, 1996, 

Puu, 1998, Sarafopoulos, 2015b, Sarafopoulos et al., 2019a). Also models with heterogeneous 

agents were studied (Agiza, Elsadany , 2003, 2004, Agiza et al., 2002, Den Haan , 20013, Fanti, 

Gori, 2012, Sarafopoulos, 2015a, Sarafopoulos et al.,2017, 2018, 2019b Tramontana , 2010, 

Zhang , 2007).When bounded rational and adaptive expectations are chosen, the nonlinear 

models become complicated and no analytical tool are available. This issue has been previously 
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analyzed by Baumol and Quandt, 1964, Puu 1995, Naimzada and Ricchiuti, 2008, Askar, 2013, 

Askar, 2014, Agiza, Elsadany, 2004, Naimzada, Sbragia, 2006, Zhang et al, 2007, Askar, 2014. 

All related literature analyzes firm’s dynamic behavior by assuming a private oligopoly 

where they are merely keen on their individual profits. However, there are many firms with 

different ownership structures. For example, publicly-owned firms tend to maximize the social 

welfare, but partially publicly-owned firms tend to maximize the weighted average of the social 

welfare and its own profit (Elsadany, Awad, 2016). The main purpose of this paper is to 

investigate the dynamic behavior of Cournot oligopoly game incorporating semipublic and 

private firms where the bounded rational players update their production strategies at discrete 

time periods by an adjustment mechanism based on maximize their individual profits and the 

social welfare. This is a partial theoretical approach to our main ongoing research objective, 

which is to quantify and study an oligopoly of the Greek market. The paper is organized as 

follows: In Section 2, the dynamics of the Cournot duopoly game with differentiated goods 

between semi-public and private firms is analyzed. The existence and local stability of the 

equilibrium points are also analyzed. In Section 3 numerical simulations are used to show 

complex dynamics via computing Lyapunov numbers, bifurcations diagrams, strange attractors 

and sensitive dependence on initial conditions. Finally, the paper is concluded in Section 4. 

2. THE GAME 

2.1 The construction of the game 

In this Cournot-type duopoly game there are two firms that produce differentiated goods and 

offer them at discrete time periods (t = 0, 1, 2, …) on their common market. These two firms 

take decisions about their production quantities also at discrete-time periods (t = 0, 1, 2, …). In 

addition, it is considered that two players are homogeneous and more specifically, that both 

companies choose their productions rationally, following the same adjustment mechanism 

(bounded rational players). At every discrete period t, each player must form an expectation of 

the rival’s output of the next time period in order to determine the corresponding profit-

maximization quantities for the next period t+1. The different consideration in this study is that 

the first player is a semi-public company and the second one is a private. So, the semi-public 

company cares about the maximization of percentage combination between the social welfare 

and its profits and the private company about its own profit-maximization only. It is supposed 

that 1 2q ,  q are the productions of each player, then the inverse demand function (as a function of 

production quantities) is given by:    

 

 i i jp q dq ,i, j 1,2,i j       (1) 

           

Also, ip  is the price of i firm’s product and α is the positive parameter which expresses the size 

of the market. So, for the two players it means: 

 

 1 1 2 2 2 1p q dq ,   p q dq        (2) 

                      
In these equations,  d 1,1   is the parameter of the differentiation between the two products. For 

positive values of the parameter d the larger the value, the less diversification there is between 

the two products. If d 0 , then each company participates in a monopoly game. On the other 

hand, the negative values of the differentiation parameter describe that two products are 

complementary.  
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We assume that both players have linear cost functions: 

 

       

  i 1 iC q c q    (3) 

 

which means that for two players the cost functions are the following: 

 

    1 1 1 2 2 2C q c q ,  C q c q      (4) 

 

We use the same positive cost parameter c 0  for two players which is equal to the marginal 

cost of the players. With these assumptions the profit function for each player is: 

 

                  

      1 1 2 1 1 1 1 1 2 1q ,q p q C q c q dq q           (5) 

and 

      2 1 2 2 2 2 2 2 1 2q ,q p q C q c q dq q           (6) 

 

Then, the marginal profits for the players are given by: 

 

                                    

 1 2
2 1 1 2

1 2

c dq 2q ,    c dq 2q
q q

 
        

 
  (7) 

 

The representative consumer maximizes the consumer surplus 1 2 1 1 2 2CS = U(q ,q ) - p q - p q , where the 

utility function U is assumed to be quadratic: 2 2
1 2 1 2 1 1 2 2

1
U(q ,q ) = a(q + q ) - (q + 2dq q + q ), a > 0

2
. Then 

 

             

  2 2
1 2 1 1 2 2 1 2 1 2

1
CS U(q ,q ) p q p q q q d q q

2
         (8) 

 

The social welfare (W) is given by: 

 

            

        2 2
1 2 1 2 1 2 1 2 1 2

1
W q ,q CS q q c q q d q q

2
               (9) 

 

with marginal welfare: 

 

                

 1 2
1

W
c q d q

q


     


  (10) 

 

The first player (semi-public firm) cares about the maximization of a function that contains a 

percentage combination between the social welfare and his profit function. This objective 

function V is described by the following equation: 

 

        1 2 1 2 1 1 2V q ,q s W q ,q 1 s q ,q       (11) 
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where  s 0,1  is the degree of public ownership. The marginal function of V is given by: 

 

               

   1 1
1

1 1 1 1 1

V W V
s 1 s s q

q q q q q

   
        

    
  (12) 

 

Both players follow the same strategy to decide their production quantities (homogeneous 

players) and they are characterized as bounded rational players. According to the existing 

literature it means that the first semi-public company decides its production following a 

mechanism that is described by the equation: 

 

 
   

 
1 1

1 1

q t 1 q t V
k ,k 0

q t q

  
  


  (13)           

 

and the second player (private company) who is also a bounded rational player follows a similar 

mechanism that is given by the equation: 

 

 
   

 
2 2 2

2 2

q t 1 q t
k

q t q

  
 


  (14) 

 

Through this mechanism each player increases his level of adaptation when his marginal utility 

is positive or decreases his level when his marginal utility is negative, where k is considered as 

the speed of adjustment for two players. The parameter k is positive (k > 0), and gives the extend 

variation production of the player is following a given utility signal.  

 

The duopoly’s dynamical system is described by: 

 

     

     

1
1 1 1

1

2
2 2 2

2

V
q t 1 q t k q t

q
   

q t 1 q t k q t
q


     


     

 

 

 

 

               

 
           

         

1 1 1 1 2

2 2 2 1 2

q t 1 q t k q t c s 2 q t d q t

q t 1 q t k q t c d q t 2 q t

               


             

  (15) 

 

 

We investigate the effect of the parameters: k (speed of adjustment), s (relative profit parameter) 

and d (differentiation degree) on the dynamics of this system. 
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2.2 Dynamical analysis 

2.2.1 The equilibriums of the game 

The equilibrium positions are the nonnegative solutions of the algebraic system: 

 

                      

 

*
1

1

* 2
2

2

V
q 0

q

q 0
q


  


  

 

  (16) 

 

which obtained by setting:     *
1 1 1q t 1 q t q    and     *

2 2 2q t 1 q t q    in the dynamical 

system of Eq. (15). 

 

 If * *
1 2q q 0   , then the equilibrium is  0E 0,0 . 

 If *
1q 0  and 2

2

0
q





 , then the equilibrium is 1

c
E 0,

2

 
  
 

. 

 If *
2q 0  and 

1

V
0

q





 , then the equilibrium is 2

c
E ,0

2 s

 
  

 
. 

 If 2

1 2

V
0

q q


 

 
 , we obtain the system: 

                   

 
  * *

1 2

* *
2 1

c s 2 q dq 0

c 2q dq 0

     

    

  (17) 

 

whose solution is the Nash equilibrium  
  

 

  

 
* 2 2

c 2 d c 2 s d
E ,

2 2 s d 2 2 s d

      
  
     

  

if 

 

                        

   
2 d 0

c 2 d 0      c
 

         (18) 

                       

      2c 2 s d 0,   2 2 s d 0         (19) 

2.2.2 Stability of equilibriums 

To study the stability of game’s equilibriums, the Jacobian matrix is used. The Jacobian matrix 

 1 2J q ,q  along the variable strategy  1 2q ,q  is: 

 

                   

   1 2

1 2

q q

1 2
q q

f f
J q ,q

g g

 
  
  

  (20) 
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where:  

 

                       

  1 2 1 1
1

V
f q ,q q k q

q


   


  (21) 

and 

                     

   2
1 2 2 2

2

g q ,q q k q
q


   


  (22) 

 

The Jacobian matrix is: 

 

            

  

2 2
* *
1 12

1 1 21* *
1 2

2 2
* *2 2 2
2 2 2

2 1 2 2

V V V
1 k q k q

q q qq
J q ,q

k q 1 k q
q q q q

    
            

  
      

             

  (23) 

 

For  0E  the Jacobian matrix is: 

 

             

  
 

 

 A 1 k c

0

1 k c 0 0
J E     

0 1 k c 0 A

          
    

      
  (24) 

 

with a double eigenvalue r A . Since r 1 ,  0E  is unstable.  

For 1E  the Jacobian matrix is: 

 

           

  
   

*
2

*
2 B 1 k c d q

21
* 2 C 1 k c
2

2 1

1 k c d q 0
B 0

J E     
D Ck q 1 k c

q q

      
 

   

       
    

     
       

   

   (25) 

 

with two eigenvalues: 

 

1r B  and 2r C  

Since 
  

1

c 2 d
r 1 k

2

 
    and   c 2 d 0   (Eq.(18)) ,  1r 1  and the equilibrium 1E  

is unstable. 

For 2E  the Jacobian matrix becomes as: 
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  
 

   

 

*
1

2
*

E 1 k c
1

1 22

* F 1 k c d q
1

V
1 k c k q E G

q qJ E     
0 F

0 1 k c d q

   

     

 
             

  
       

   (26) 

 

with two eigenvalues: 1r E  and 2r F .  

Since 
  

2

c 2 s d
r 1 k

2 s

   
  


 and   c 2 s d 0    (Eq.(19)) , 2r 1  and the 

equilibrium 2E  is unstable.  

For  *E  the Jacobian matrix is: 

 

        

  
 

2 2
* *
1 12 * *

1 21 1 1
* * *2 2

* * 2 22 2
2 2 2

2 1 2

V V
1 k q k q

q qq 1 k 2 s q k d q
J E   =

k d q 1 2k q
k q 1 k q

q q q

  
     

          
   

               
    

  (27) 

 

with 

                    

   * *
1 2Tr 2 k 2 s q 2k q         (28) 

and  

          

    * * 2 2 * *
1 2 1 2Det 1 k 2 s q 2k q k 2 2 s d q q             

 
  (29) 

 

To study the stability of Nash equilibrium we use three conditions that the equilibrium position is 

locally asymptotically stable when they are satisfied simultaneously (Elaydi, 2005): 

 

 

(i) 1 Det 0

(ii)   1 Tr Det 0

(iii) 1 Tr Det 0

 

  

  

  (30) 

                     

From condition (ii) we obtain: 

 

              

  2 2 * *
1 21 Tr Det 0 k 2 2 s d q q 0         

 
  (31) 

 

and it’s always satisfied, because   22 2 s d 0   . 

From the condition (i) we obtain: 

 

    * * 2 * *
1 2 1 21 Det 0 2 s q 2q k 2 2 s d q q 0            

 
  (32) 

 

Finally, from condition (iii): 

 

    2 * * 2 * *
1 2 1 21 Tr Det 0 2 2 s d q q k 2 2 s q 2q k 4 0                

   
  (33) 
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Then, we obtain: 
 

Proposition. The Nash equilibrium of the discrete dynamical system Eq. (15) is locally 

asymptotically stable if: 

 

   * * 2 * *
1 2 1 22 s q 2q k 2 2 s d q q 0         

 
 

and 

   2 * * 2 * *
1 2 1 22 2 s d q q k 2 2 s q 2q k 4 0            

   
 

 

 

 

From Eq. (32): 

 

 
  2 * *

2 1

1 2 s 2
0 k

2 2 s d q q

 
        

  (34) 

    

(first stability condition for k)      

 

Also, the discriminant of Eq. (33) is positive: 

 

     
2 2

* * 2 * * * * 2 * *
1 2 1 2 1 2 1 24 2 s q 2q 16 2 2 s d q q 4 2 s q 2q 16d q q 0                   

     
,  

with * *
1 2q ,q 0  

 

and the condition (iii) is true when: 

 

    1 2k 0,k k ,     (35) 

 (second stability condition for k)         

 

where 

 

 
 

 

* *
1 2

1,2 2 * *
1 2

2 2 s q 2q
k

2 2 2 s d q q

     
 


  
 

  (36) 

                    

are the two real roots of Eq. (33). Then we obtain: 

 

Corollary. The Nash equilibrium of the discrete dynamical system Eq. (15) is locally 

asymptotically stable if: 

  2 * *
2 1

1 2 s 2
0 k

2 2 s d q q

 
        

 and    1 2k 0,k k ,   , where 1,2k  are the two real roots of Eq. 

(33). 
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3. NUMERICAL SIMULATIONS 

3.1 Stability spaces 

The three-dimensional stability space (Fig.1) is obtained by the two stability conditions that are 

described in Proposition, setting specific values for the other parameters 5   and c 1 . We 

continue with the two-dimensional stability spaces focusing on all combinations of the three 

basic parameters taking them in pairs. The stability space between the parameters s (horizontal 

axis) and d (vertical axis) (Figure 2) is obtained by setting: k 0.27 . Figure 3 contains the 

stability space between the parameters s (horizontal axis) and k (vertical axis) for 5,  c 1    

and d 0.25 . The last stability space (Fig. 4) is between the parameters k (horizontal axis) and d 

(vertical axis) for 5,  c 1   and s 0.5 .   

   

 
 

Figure 1: 3D stability space between the parameters k, d and μ for  5,  c 1   . 

 
 

 
Figure 2: Region of stability between s (horizontal axis) and d (vertical axis) for 5,  c 1    and k 0.27 . 
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Figure 3: Region of stability between s (horizontal axis) and k (vertical axis) for 

and d 0.25 . 

 

 
Figure 4: Region of stability between k (horizontal axis) and d (vertical axis) for  5,  c 1    and s 0.5 . 

3.2 Effect of the parameter k (speed of adjustment) 

In this section we present various numerical results focusing on the parameter k, including 

bifurcation diagrams, strange attractors, Lyapunov numbers and sensitive dependence on initial 

conditions (Kulenovic, M. and Merino, O.). We choose some fixed values of the others 

parameters : 5,   c 1,  d 0.25 and s 0.3 . Then, *
1q 2.097  and *

2q 1.737 . The stability 

conditions for k is : 0 k 0.57   and    k 0,0.49 0.65,1  , or equivalently, 0 k 0.49  . It is 

verified by the bifurcation diagrams of the parameter k against the variables *
1q  (left) and 

*
2q  

(right) that are shown in Fig.5 and Fig.6. These two figures show that the equilibrium undergoes 

a flip bifurcation at k 0.49 . Then a further increase in speed of adjustment implies that a stable 

two-period cycle emerges for 0.49 k 0.60  . As long as the parameter k reduces a four-period 

cycle, cycles of highly periodicity and a cascade of flip bifurcations that ultimately lead to 

unpredictable (chaotic) motions are observed when k is larger than 0.64.        
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Figure 5: Bifurcation diagrams with respect to the parameter k against the variables *

1q  (left) and *
2q  

(right) with 400 iterations of the map Eq.(15) for 5,  c 1,  d 0.25 and s 0.3     . 

 
Figure 6: Two bifurcation diagrams of Fig.5 are plotted in one. 

 

This unpredictable (chaotic) behavior of the system Eq. (15) is visualized in Fig. 7 (left) with the 

strange attractor for k 0.7 . This is the graph of the orbit of (0.1,0.1) with 8000 iterations of the 

map Eq.(15) for 5,  c 1,  d 0.25 and s 0.3     . Also, we use the useful tool of Lyapunov 

numbers (Fig.7 (right)) (i.e. the natural logarithm of Lyapunov exponents) as a function of the 

parameter of interest. Figure 7 (right) shows the Lyapunov numbers of the same orbit. It is 

known that if the Lyapunov number is greater than 1, one has evidence for chaos. 
  

     
Figure 7: Phase portrait (strange attractor) (left) and Lyapunov numbers (right) of the orbit of (0.1,0.1) 

with 8000 iterations of the map Eq.(15) for 5,  c 1,  d 0.25,  s 0.3      and k 0.7 . 

 

Another characteristic of deterministic chaos is the sensitivity dependence on initial conditions. 

In order to show the sensitivity dependence on initial conditions of the system Eq.(15), we have 

computed two orbits with initial points (0.1,0.1) and (0.101,0.1) respectively. Figure 8 shows the 

sensitivity dependence on initial conditions for 1q   coordinate of the two orbits, for the system 
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Eq.(15), plotted against the time with the parameter values 5,  c 1,  d 0.25,  s 0.3      and 

k 0.7 . At the beginning the time series are indistinguishable; but after a number of iterations, 

the difference between them builds up rapidly. From these numerical results when all parameters 

are fixed and only k is varied the structure of the game becomes complicated through period 

doubling bifurcations, more complex bounded attractors are created which are aperiodic cycles 

of higher order or chaotic attractors. 
 

      
Figure 8: Sensitive dependence on initial conditions for 1q -coordinate plotted against the time: the orbit 

of (0.1,0.1) (left) and the orbit of (0.101,0.1) (right) of the system Eq.(15) for 5,  c 1,  d 0.25,  s 0.3      

and k 0.7 . 

3.3 Effect of the parameter d (product differentiation degree) 

Using Fig.9 we can find that when s 0.6  and k 0.27  there is a stable equilibrium for 

 d 0.5,1   and it is verified by the bifurcation diagrams of d against *
1q  (left) and *

2q  (right). 

Also, a chaotic behavior for the system Eq.(15) appears for negative values of the parameter d 

(products’ differentiation degree) making the system unpredictable. This chaotic behavior can be 

shown by the strange attractor (Fig.11 (left)) and the Lyapunov numbers (Fig.11 (right)) that are 

plotted for d 0.5  (outside the stability space). Finally the system Eq.(13) becomes sensitive on 

small changes of its initial conditions when the parameter d takes small negative values (Fig.12).   
 

      

Figure 9: Bifurcation diagrams with respect to the parameter d against the variables *
1q  (left) and *

2q  

(right) with 400 iterations of the map Eq.(15) for 5,  c 1,  k 0.27 and s 0.6     . 
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Figure 10: Two bifurcation diagrams of Fig.9 are plotted in one. 

 

 

 

        
 

Figure 11: Phase portrait (strange attractor) (left) and Lyapunov numbers (right) of the orbit of (0.1,0.1) 

with 2000 iterations of the map Eq.(15) for 5,  c 1,  k 0.27,  s 0.6      and d 0.7  . 

 

 

 

       
 

Figure 12: Sensitive dependence on initial conditions for 1q -coordinate plotted against the time: the orbit 

of (0.1,0.1) (left) and the orbit of (0.101,0.1) (right) of the system Eq.(15) for                    

5,  c 1,  k 0.27,  s 0.6      and d 0.7  . 
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3.4 Effect of the parameter s (the degree of public ownership) 

From the stability space between the parameters d and s (Fig.2) it seems that when d 0.6   and 

k 0.27  there is a stable equilibrium for very small values of the parameter s near zero and it is 

verified by the bifurcation diagrams of d against *
1q  (left) and *

2q  (right) (Fig.13). Also, a chaotic 

behavior for the system Eq. (15) appears for large values of the parameter s (relative profit 

parameter) and a chaotic trajectory appeared. This chaotic behavior can be shown by the strange 

attractor (Fig.14 (left) and the Lyapunov numbers (Fig.14 (right)) that are plotted for s 0.98 . 

Finally, the system Eq. (15) becomes sensitive on small changes of its initial conditions when the 

parameter s takes large values (Fig.15). Also, using the stability region of Fig.2 it seems that 

when k = 0.27 and the parameter d (product’s differentiation degree) takes large values, there is a 

locally asymptotically stable Nash Equilibrium for every value of the parameter s and it means 

that the parameter s (relative profit parameter) cannot destabilize the economy for specific values 

of the other parameters α, c and k.    

 

        
 

Figure 13: Bifurcation diagrams with respect to the parameter s against the variables *
1q  (left) and *

2q  

(right) with 400 iterations of the map Eq.(15) for 5,  c 1,  k 0.27 and d 0.6      . 

 

          
 

Figure 14: Phase portrait (strange attractor) (left) and Lyapunov numbers (right) of the orbit of (0.1,0.1) 

with 2000 iterations of the map Eq.(15) for 5,  c 1,  k 0.27,  d 0.6       and s 0.98 . 
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Figure 15: Sensitive dependence on initial conditions for 1q -coordinate plotted against the time: the orbit 

of (0.1,0.1) (left) and the orbit of (0.101,0.1) (right) of the system Eq.(15) for 

5,  c 1,  k 0.27,  d 0.6       and s 0.98  . 

4. CONCLUSIONS 

The present paper is a partial theoretical approach to our main ongoing research objective, which 

is to quantify and study an oligopoly of the Greek market. We analyzed through a discrete 

dynamical system the behavior of a differentiated Cournot duopoly game incorporating 

semipublic and private firms. By assuming that the bounded rational players update their 

production strategies at discrete time periods by an adjustment mechanism, based on maximize 

their individual profits and the social welfare, a discrete dynamic system was obtained. Existence 

and stability of equilibriums of this system are studied. We showed that the speed of adjustment 

(k), the parameter of the differentiation (d) and the degree of public ownership (s) may change 

the stability of equilibrium and cause a structure to behave chaotically. For low values of k and s 

or for high values of d the Cournot-Nash equilibrium is stable. Increasing (decreasing) these 

values, the equilibrium becomes unstable, through period doubling bifurcation. Finally, we 

showed that for lower values of the speed of adjustment the Cournot–Nash equilibrium is stable 

for each value of the differentiation parameter or the degree of public ownership parameter.  
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