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1. THE GENERAL PROBLEM OF PHASING LAUNCHES IN PRODUCTION 

Phasing is a problem of production programming that refers to arraging the operations 

gradually, in time and space. The concept of production phasing means to distribute n production 

tasks on m machines (performers), based on some criteria rigorously established. Whatever type 

of production, phasing experinces difficulties both in achieving the objective (filling positions 

entirely and minimizing the production cycle) and in directing resources needed for production. 

The possible formulations for the optimization criterion (the performance index) are: 

- minimizing the production cycle (the total duration of operations); 

- minimizing the stagnation time of machines; 

- minimizing uncomplete production; 

- minimizing specific costs; 

- minimizing delays to delivery deadlines of products. 

The problem of phasing may be stated statically (if all data are known in advance) or 

dynamically (in case of data reffering to products, resources and disturbances may change during 

the production). The problems of dynamic phasing require a methodology for solutions in real 

time. 

When formulating the problem of phasing, it is essential to select the correct optimization 

criterion (the performance index), because the importance of various criteria – from the 

econonomic and production points of view – is not the same. The applications made so far show 

that the efficiency achieved by shortening the average cycle of a model production is much 

smaller than the efficiency achieved by reducing the stagnation of machines. Even minimizing 

the production cycles or the stagnation of equipments are considered to be measures of 

secondary importance compared to the rhythmic supply with parts of fitting departments. A 
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comparative study conducted through simulations, in terms of efficiency of some optimal criteria 

in production phasing, led to the conclusion that an optimal economic solution is the uniform 

charging of the equipment (not maximum), without gaps and jams (Moldoveanu,G., Dobrin,C., 

2003). 
The general problem of phasing states as follows (Constantinescu, D., 2003): 

Given: 

a) a number of product lots, each consisting of a number of parts; 

b) the technological process for each lot consisting of a number of operations, their 

sequence being known; 

c) the durations of operations, the preparation time and the transport time between two 

operations; 

d) the groups of available machines, the number of machines in each group and the 

terms of release. 

Find: that sequence of lot processing on each machine that provides the best loading of machines 

(the times of inactivity between two lots should be minimal). 

2. ELEMENTS OF THE THEORY OF GROUPS NEEDED IN APPROACHING THE 

PROBLEM OF PRODUCTION PHASING  

In mathematics, a group is an algebraic structure consisting of a set defined by a law of internal 

composition (operation) that combines two elements of that set to form the third element of that 

set. To be a group, the range and the operation should meet a number of conditions. For example, 

the group G together with a binary operation denoted ∙ G x G → G, (x, y) → x ∙ y meets the 

following axioms (Buşneag, D., 1994): 

(G1) (Associativity) (x ∙ y) ∙ z = x ∙ (y ∙ z), (∀) x,y,z  G; 

(G2) (Neutral element)  (∃) e∈ G so that x ∙  e = e ∙ x = x, (∀) x ∈  G; 

(G3) (Reversibility) (∀) x ∈  G, (∃) x-1 ∈ G so that x ∙ x-1 = x-1∙ x = e 

If in addition it occurs: 

(G4) (Commutativity) x ∙ y = y ∙ x, (∀) x,y ∈ G, say that G is abelian or commutative. 

Although these are properties common to many mathematical structures, such as sets of 

numbers, formulating axioms is detached from the concrete nature of the group and the 

respective operation. This allows us to handle some entities of different mathematical origins in a 

flexible manner, keeping the essential structural issues common to many types of objects. The 

omnipresence of groups in numerous areas, both mathematical and others, makes them a central 

organizing principle in the contemporary mathematics. 

Groups have the fundamental property of symmetry. A group of symmetry abstracts the 

symmetry characteristics of a geometric object: it consists of a set of changes that does not 

modify the object and the operation of combining these changes by chaining them. Such 

symmetry groups, especially the continuous Lie groups, play an important role in many 

academic subjects.  

For this study, we recall some basic mathematical knowledge on permutations and groups 

(Barbilian, D.,1988): 

a) the analyzed permutations will be characterized by: 

- the transposition of the permutation τ, denoted by τ = (i,j), for which i,j form the set A = 

{1,2,….,n}, i≠j, resulting τ(i) = j, τ(j) = i şi τ(k) = k, (∀) k∈A\{i,j}; 

- the inversion of a permutation σ, denoted by Inv(σ), if the ordered pair (i,j), with  1≤ i< j ≤ n 

we have σ(i) > σ(j). The sign (signature) of permutation will be ε (σ) = (-1) Inv(σ), for which the 

value +1 represents the even permutation and the value represents -1  the odd permutation; 
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- the order of a permutation α, denoted by ord α, which states that if α∈Sn is an m- cycle, then 

ord α = m. 

b) in studying groups, we considered the following elements of analysis: 

- the neutral element of a subgroup of a group coincides with the neutral element of the group it 

belongs to. For any element of the subgroup, its inverse in this subgroup coincides with its 

inverse in the group; 

- the order of any subgroup of a finite group is a divisor of the group order (Lagrange's 

theorem). It results that within a finite group, the order of each element is finite and it is a 

divisor of the group order, and every group of even order is cyclic (the group is generated by a 

one of its elements); 

- the composition factor is the ratio between the order of the parent group and the order of the 

subgroup; 

- if (G ∙) is a group and H is one of its subgroups, then the following statements are equivalent: 

      a) xH = Hx, (∀) x∈G 

      b) (∀) x∈G, (∀) h∈H => xh-1
∈H 

The subgroup H of the group G that satisfies the equivalent statements is called a normal 

subgroup (normal divisor) of the group G.   

- any finite group is isomorphic to a subgroup of a group of permutations (Cayley's theorem); 

- for two groups (G,◦) and (G’,•) a function f : G → G’, with the property f(x◦y) = f(x) • f(y), 

(∀) x,y ∈G is called a group morphism. A function f : G → G’, which is a morphism of groups 

is reversible and the inverse function f-1 : G’ → G is also a morphism of groups, called group 

isomorphism. If between the two groups there is at least one isomorphism, we say that the 

groups are isomorphic (G ≈ G’). 

It is important for this study that the direct and inverse isomorphisms transport a structure in the 

other, thus transferring all the properties of a group in the other group, as we exemplify in 

section 3. Therefore, two isomorphic groups have the same properties, so they are basically 

"identical" in terms of algebraic behavior. Therefore in algebra, the "recognition" of a group is 

made by highlighting a known group isomorphic with it. Thus we reach the following step of 

abstraction: all groups isomorphic between them behave identically, they can be assimilated with 

one of them, detaching from the set and operation of each group taken individually, no matter 

their specific identity. 

3. THE CORRELATION BETWEEN SYMMETRIES AND PERMUTATIONS 

THROUGH THE THEORY OF GROUPS 

A symmetry of a mathematical object is a transformation that preserves the structure of the 

object; we note first that symmetry is a process, not an object, and a permutation is a way to 

rearrange things. It is not, strictly speaking, rearranging itself, but the rule to be applied to obtain 

rearrangement. 

There are three key words in defining a symmetry: "transformation", "structure" and 

"invariance". The transformation refers to the various things we can do with a particular object, 

while the structure consists of the signifiant mathematical properties; the invariance means that 

the structure of the transformed object is the same with that of the original. Permutations and 

groups are intimately linked; in fact, the group concept was born from the study of permutations. 

 Let us examine the set of all possible permutations of numbers 1,2,3, knowing that the 

number of permutations of n different objects is achieved with n! : 
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The element giving the identical numerical order is denoted by I. Each of the operations t1, t2 

and t3 implements and interchanges two of the numbers, leaving the third in its place. The two 

operations s1 and s2 are both cyclical permutations, moving the numbers around a circle. Let's see 

what happens if we apply two successive permutation operations, taking into account that it is 

important which number replaces other, and not the order in which they are written. Take, for 

example, t1 followed by s1. The operation t1 leaves 1 in its place, then t1 changes 1 in 2. The net 

result is the transformation 1 → 2. At the same time, t1 replaces 2 with 3, then s1 replaces 3 with 

1, causing the net result 2 → 1. Finally, 3 is transformed into 2 by operation t1 and then back into 

3 by operation s1. We find that t1 followed by s1 gives the permutation: 

 










213

123
 

 

which is precisely the operation t3. In other words, if the symbol   ͦ  designates  the operation 

"followed by", we find that s1  ͦ t1 = t3, considering that the first applied operation is always the 

right one. Judging similar for the other operations, the graph of the composition law (Cayley's 

graph) has the following form: 

 
◦   I s1 s2 t1 t2 t3 

I I s1 s2 t1 t2 t3 

s1 s1 s2 I t3 t1 t2 

s2 s2 I s1 t2 t3 t1 

t1 t1 t2 t3 I s1 s2 

t2 t2 t3 t1 s2 I s1 

t3 t3 t1 t2 s1 s2 I 

 

Note that the set of all permutations of three elements forms a group. In fact, this statement is 

true for the permutations of any number of elements. The graph demonstrates both the closing 

(the composition of any two permutations of three elements gives another permutation of three 

elements), and the fact that each permutation corresponds to a symmetrical one (which cancels 

the effect of the first). One may notice easily that s1 and s2 are symmetrical (applying the two 

transformations one after another, the original order restores: s1   ͦs2 = I; s2  ͦs1 = I). Similarly, each 

of the operations t1, t2, t3 is its own symmetrical item; applying it on any of them twice, the status 

quo recovers: t1  ͦt1 = I; t2  ͦt2 = I; t3  ͦt3 = I. The order of the permutation group, which is the natural 

number equal to the number of items in the group is 6 and is denoted by |G|. 

We intend to further analyze the symmetries of an equilateral triangle and show that the 

group of permutations of three elements and the symmetry group of the equilateral triangle are 

isomorphic. We find that there are six such structures that leave the triangle unchanged: they 

correspond to the neutral element, the rotation with 1200, the rotation with 2400 rotation, and 

reflection in relation to the three axes. What is actually doing a 1200 rotation of the triangle, 

trigonometrically? It only takes the edge A and moves it from position 1 to position 2. At the 

same time, it moves the edge B from position 2, and the edge C from position 3 to position 1. In 

other words, we see this rotation as a permutation of the positions 1,2,3 in relation to the edges of 

the triangle rotating: 
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Analogically, each of the other five symmetries of the triangle corresponds to one of the 

other permutations, meaning that the structure of the two groups is identical. Therefore, the two 

groups, the group of permutations of three elements and the symmetry group of the equilateral 

triangle, are isomorphic. If we consider the three elements of the group of permutations to be 

three technological operations, then this group is also isomorphic to the group of symmetries of 

an equilateral triangle. 

Besides the isomorphism mentioned above, let us present another that highlights how two 

other groups have an identical structure. Let us consider four classes of technological operations 

denoted A, B, C, D, each with two subclasses bearing the indices 1 and 2 as follows:  
 

                 A1                                         B1                                                         C1                                                           D1 

                                                                   

A B C D 

                                                            

                 A2                                         B2                                                              C2                                                           D2  
 

         We require the following restrictions: 

1. Class A of technological operations can be performed simultaneously with the operation 

class C 

2. Class B of operations can be performed simultaneously with the operation class D 

3. The technological operations resulted from the subclasses A1 and C2 represent class D 

4. The technological operations resulted from the subclasses C1 and A2 represent class B 

5. The technological operations resulted from the subclasses B1 and D2 represent class C 

6. The technological operations resulted from the subclasses D1 and B2 represent class A 

The relations (1) and (2) may be represented by the following correspondence, denoted 

by f: 









=

CDAB

ABCD
f  

 

We note that if this permutation is performed twice, it restores the original idea f  ͦ f = I 

(where I is the identity), f brings A instead of C and C instead of A, so that applying f twice 

returns A under itself, doing the same for the other letters. Rules (3) - (6) may be represented by 

two permutations, denoted by p and m:   

     

                              







=

DCBA

ABCD
p                                         








=

BADC

ABCD
m  

 

We note again that  ͦp  ͦp = I and m  ͦm = I. Also, each of the permutations f, p, m, operating 

in succession, produces the third one. Cayley's graph looks as follows: 

 
◦  I  f p m 

I I f p m 

f f I m p 

P p m I f 

m m p f I 
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Let us analyze another group and study the isomorphism with the above. Let us consider 

other four simple sets: set X has only one element, which is U1 machine; set Y has one element, 

the machine U2; set Z is composed of two elements: the machines U1 and U2. I designates the 

empty set, which has absolutely no element, its role is similar to that played by zero in the 

ordinary addition. Let us use the symmetric difference of sets to combine any two of these sets, 

according to the relation:  

 

A Δ B = (A\ B)∪(B \ A) 

Cayley's graph is the following: 

 

Δ  I  X Y Z 

I I X Y Z 

X X I Z Y 

Y Y Z I X 

Z Z Y X I 

 

One may note that each of X, Y, Z is its own symmetrical item. Therefore, associating the 

operation Δ to the sets X, Y, Z, I, we get a group. Although both groups’ members in the two 

cases and laws of composition are completely different, the two groups have an identical 

structure, being isomorphic. 

4. SETTING THE SEQUENCE OF TECHNOLOGICAL OPERATIONS THROUGH 

THE GROUP OF PERMUTATIONS. THE IMPORTANCE OF GALOIS THEORY IN 

SOLVING THE PRODUCTION PHASING 

We approach the processing sequence through the group of permutations in two ways, 

identifying a distinct goal for each mode, as follows:  

- in case of a first approach in terms of groups of different cost technological operations, 

we intend to determine the success probability of sequencing the operations based on a strategy 

that uses the information from a finite number of steps; 

- in a second approach, we intend to establish an execution sequence of technological 

operations based on normal subgroups within the group of permutations S3. Galois theory, given 

the phasing expressed by an equation, could highlight a formula to solve it through Galois group. 

According to the the first approach, let us consider four groups of technological operations 

whose costs are denoted as follows:  

1- high cost operation 

2- average cost operation 

3- low cost operation 

4- lowest cost operation 

The operations are not performed simultaneously and there are no returns to a previous, 

inadequate operation. For the four groups of operations, each of the 4! = 24 permutations of the  

execution sequence has the same probability, as in the table below: 
 

1234 2134 3124 4123 

1243 2143 3142 4132 

1324 2314 3214 4213 

1342 2341 3241 4231 

1423 2413 3412 4312 

1432 2431 3421 4321 
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For example, the sequence 3142 means that the low-cost operation is first executed, followed by 

the high cost operation, then the lowest cost operation, and the last operation is the average cost 

one. The question is what are the maximum chances of programming the low cost operation. The 

strategy to approach this problem, based on the information already gathered, is this: we choose 

a number to call k, between 1 and 4; after we have researched k-1 operations, we opt for the first 

one which is better than all others. Using this strategy, not telling what value to choose for k, we 

have to find the value of k that gives the highest probability to choose the lowest cost operation, 

as follows: 

- for k = 1 (k-1 = 0), the first operation is the one that ends up being chosen, based on the 

six permutations of the sequnce in which 4 occurs first: 4321, 4312, 4231, 4213, 4132, 

4123. The probability to run one of the six permutations of the twenty-four possibilities is 

one of four existing; 

- for k = 4 (k-1 = 3), it is considered the chance that the fourth and last operations to be 

better than any of the previous three. The situation corresponds to the permutations 3214, 

3124, 2314, 2134, 1324, 1234, the probability is that the order of operation execution is 

still one in four; 

- for k = 3 (k-1 = 2), we choose two operations, then the first that comes after these two 

and it is better than both. The permutations in this case leading to the lowest cost 

operation are: 3241, 3214, 3142, 3124, 2341, 2314, 2143, 1342, 1324, 1243. In this case, 

there are ten permutations that lead to the best choice, while the chances of success are 

10:24 or about 42%; 

- for k = 2 (k-1 = 1), the option will be the first operation which has the cost lower than 

first appeared. The permutations are: 3421, 3412, 3241, 3214, 3142, 3124, 2431, 2413, 

2143, 1432, 1423. Note that this is the best strategy to be adopted since the desired result 

in 11 of the 24 possibilities offers a success probability of about 46%. We demonstrate 

mathematically that if the number of operations is higher than 30, the "rule of 37%" 

produces the best chances of success, meaning that we examine 37% of the possibilities 

and then we choose the lowest cost operation of all operations taken before. 

According to the the second approach of using an equation in production phasing, we examine 

first the symmetry properties of the permutations in the equation solutions. We demonstrate 

using Galois Theory that the equation has its own profile symmetry, representing its symmetry 

properties. Galois group would represent the largest group of permutations of the solutions, 

assumed to exist, and leaving unchanged the values of certain combinations of these solutions. 

For any degree there are equations that have the maximum possible symmetry, meaning that 

Galois group is the whole Sn. Galois defined some particular subgroups, called normal, that have 

been defined in section 2. If a group has no normal subgroups (other than the two trivial 

subgroups, one made only of the identical transformation and the other represented by the group 

itself), then it is called simple. All groups may consist of simple groups, but the simple groups 

can not be decomposed further through a similar process (Sâmboan, G.,1968). 

Based on Cayley's graph described in section 3, the group of six permutations of three 

elements S3 has the following subgroups: 

- [I, s1,s2], [I, s2, t3], denoted by T and U, respectively, containing three permutations each; 

- [I, t2], [I,s1], [I,t1], denoted by V,W,X, containing two permutations each; 

- [I], denoted by I ;I containing one permutation. 

According to the definition of the normal subgroup in section 2, it results that the normal 

subgroups are T, U, I, as well as the whole group [I, s1, s2, t1, t2, t3]. The subgroups V, W, X, 

containing two permutations each, are not normal. To demonstrate this, for example for the 

subgroup T, we take a member of it and multiply it to the left with a member of S3, and to the right 

with the symmetrical element of the element selected from S3, resulting: t1◦ s1◦ t1 = t3 ◦ t1 = s2, 
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which is an element of T. Things are similar when choosing t2 in S3, where its symmetrical is 

again t2 (see Cayley's graph), as follows: t2◦ s1◦ t2 = t1 ◦ t2 = s2. 

The permutations of T normal subgroup are characterized by the following values of inversion, 

signature, transposition and order, as follows: 
  










123

123
                                   









231

123
                              









312

123
 

                                   I                                            s1                                                       s2 

 

                           Inv(I) = 0                            Inv(s1) = 1+1=2                 Inv(s2) = 2+0 =2    

                ε (I) = (-1)0 = 1(even)                   ε (s1) = (-1)2 = 1(even)      ε (s2) = (-1)2 = 1(even) 

                             τI = 0                                       τs1 = 0                                 τs2 = 0 

                           ord I = 0                                 ord s1 = 3                           ord s2 = 3 
 

It results three variants of processing in the sequence of operations, given by: 
 

3  -  1  -  2 

2  -  3  - 1 

1  -  2  -  3 
 

for which the option for a technological variant is given by the cost of each operation. 

Similarly, for U normal subgroup it results:  

 



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
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123
                                    


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                               




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213

123
 

                                   I                                            s2                                                         t3 

 

                           Inv(I)=0                               Inv(s2) = 2+0=2               Inv(t3) = 1+0 = 1    

                ε (I) = (-1)0 = 1(even)                 ε (s2) = (-1)2 = 1(even)      ε (t3) = (-1)1 = -1(odd) 

                             τI = 0                                       τs2 = 0                                 τt3 = (1,2) 

                           ord I = 0                                 ord s2 = 3                           ord t3 = 2 

The variants of processing, in the sequence of operations, are: 

 

2  -  1  -  3 

3  -  1  - 2 

1  -  2  -  3 

 

This reasoning may be pushed forward, namely the possibility of solving the problem of 

production phasing through a determined formula. Galois Theory gives again an answer to this 

problem: the equations formulating the production phasing should have a solvable particular 

group (Galois group), meaning that each of the composition factors generated by its normal sub-

maximal subgroups is a prime number. Let us calculate the composition factors (f.c) (Năstăsescu, 

C., Niţă, C., Vraciu, C.,1986):  

 

S3 and T (respectively S3 and U) => f.c = 6:3 = 2 

T and V (respectively T and W;  T şi X) => f.c = 3:2 = 1,5 

T şi I => f.c = 3:1 = 3 
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It results that the hierarchy of generations of subgroups S3 and T, T and I gives the row of 

composition factors 2, 3, which are prime numbers. If the problem of phasing is expressed by an 

equation of third degree, it would have a maximum symmetry if Galois group is S3, which is 

solvable because both composition factors are prime numbers. Things are similar for the fourth 

degree of the equation, but for a five degree equation a formula is not possible. It is known that 

an equation can be solved by a formula provided that its Galois group is solvable. The 

explanation lies in the fact that, although there might be equations for which Galois group is S5, 

it is not solvable because one of its composition factors is 60, which is not a prime number.

  

4. CONCLUSIONS 

The problem of production phasing represents most part of the operational research, 

giving, through algorithms, solutions for optimal sequence of technological operations. In this 

paper, we tried to move the center of gravity of the problem in the theory of finite groups of 

permutations, that may provide well determined and mathematically justified solutions. The 

concept of symmetry is important in this study, since we approach the correlation between 

symmetries and permutations through the theory of groups, starting from their omnipresence in 

all areas, both within and beyond mathematics. It has been demonstrated that the finite groups 

are immersed in the groups of permutations, meaning that the study of finite groups reduces to 

that of subgroups of permutation groups. The isomorphism of the technological operation group 

with the group of permutations of three elements S3 reveals that, on the one hand, that the group 

operations is cast in the same "mold" as the group of permutations, and on the other hand, their 

algebraic behavior is identical in case of their commutativity and cyclicity. We started from the 

idea that the specific bijective of isomorphism "transfers" of a group structure to an "amorphous" 

(unstructured) set and, conversely, any structure can be thought of as coming from such a 

"transport" conducted by a bijection. 

The sequence of technological operations is established through the analysis of normal 

subgroups, calculating transpositions, inversions and permutation order specific to these 

subgroups. Galois theory may find applicability in solving the problem of production phasing, 

but since there is no specific equation it can not be established yet a determined formula, 

although Galois group is solvable in some cases by the row of composition factors prime 

numbers. The problem is still under study, and we look for algebraic methods of solving the 

problem in the future. 
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